Characteristic Boundary Conditions for the Numerical Solution of Euler Equations by the Discontinuous Galerkin Methods

نویسندگان

  • Ioannis Toulopoulos
  • John A. Ekaterinaris
چکیده

We present artificial boundary conditions for the numerical simulation of nonlinear Euler equations with the discontinuous Galerkin (DG) finite element method. The construction of the proposed boundary conditions is based on characteristic analysis which follows the Euler equations and are applied for boundaries with arbitrary shape and orientation. Numerical experiments demonstrate that the proposed boundary treatment enables to convect out of the computational domain complex flow features with little distortion. In addition, it is shown that small-amplitude acoustic disturbances could be convected out of the computational domain, with no significant deterioration of the overall accuracy of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of a Sloping-frame: Closed-form Solution versus Finite Element Solution and Modification of the Characteristic Matrices (TECHNICAL NOTE)

This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an ...

متن کامل

Discontinuous Galerkin solution of compressible flow in time-dependent domains

This work is concerned with the simulation of inviscid compressible flow in time dependent domains. We present an ALE (Arbitrary Lagrangian-Eulerian) formulation of the Euler equations describing compressible flow, discretize them in space by the discontinous Galerkin method and introduce a semi-implicit linearized time stepping for the numerical solution of the complete problem. Special attent...

متن کامل

Continued Development of the Discontinuous Galerkin Method for Computational Aeroacoustic Applications

The formulation and the implementation of boundary conditions within the context of the quadrature-free form of the discontinuous Galerkin method are presented for several types of boundary conditions for the Euler equations. An important feature of the discontinuous Galerkin method is that the interior point algorithm is well behaved in the neighborhood of the boundary and requires no modi cat...

متن کامل

High-order discontinuous element-based schemes for the inviscid shallow water equations: Spectral multidomain penalty and discontinuous Galerkin methods

Two commonly used types of high-order-accuracy element-based schemes, collocationbased spectral multidomain penalty methods (SMPM) and nodal discontinuous Galerkin methods (DGM), are compared in the framework of the inviscid shallow water equations. Differences and similarities in formulation are identified, with the primary difference being the dissipative term in the Rusanov form of the numer...

متن کامل

Semi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation

Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010